Exercise 27

Prove Equation 5 using (a) the method of Example 3 and (b) Exercise 18 with x replaced by y.

Solution

Equation 5 is on page 262.

$$
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

Part (a)
Let

$$
y=\tanh ^{-1} x
$$

Then

$$
\begin{aligned}
x=\tanh y=\frac{\sinh y}{\cosh y}=\frac{\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}}{2} & =\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}} \\
& =\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}} \times \frac{e^{y}}{e^{y}} \\
& =\frac{e^{2 y}-1}{e^{2 y}+1}
\end{aligned}
$$

Solve for y by multiplying both sides by $e^{2 y}+1$.

$$
\begin{gathered}
x\left(e^{2 y}+1\right)=e^{2 y}-1 \\
x e^{2 y}+x=e^{2 y}-1 \\
x+1=e^{2 y}-x e^{2 y} \\
1+x=(1-x) e^{2 y} \\
\frac{1+x}{1-x}=e^{2 y}
\end{gathered}
$$

Take the natural logarithm of both sides.

$$
\begin{aligned}
\ln \left(\frac{1+x}{1-x}\right) & =\ln e^{2 y} \\
& =2 y \ln e \\
& =2 y
\end{aligned}
$$

Divide both sides by 2 .

$$
y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

Therefore,

$$
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) .
$$

Part (b)

Let

$$
y=\tanh ^{-1} x
$$

Then

$$
\tanh y=x
$$

From Exercise 18,

$$
\frac{1+\tanh y}{1-\tanh y}=e^{2 y}
$$

As a result,

$$
\frac{1+x}{1-x}=e^{2 y}
$$

Take the natural logarithm of both sides.

$$
\begin{aligned}
\ln \left(\frac{1+x}{1-x}\right) & =\ln e^{2 y} \\
& =2 y \ln e \\
& =2 y
\end{aligned}
$$

Divide both sides by 2 .

$$
y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

Therefore,

$$
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

